Search results for "Lie algebra"
showing 10 items of 134 documents
Codimension growth of central polynomials of Lie algebras
2019
Abstract Let L be a finite-dimensional simple Lie algebra over an algebraically closed field of characteristic zero and let I be the T-ideal of polynomial identities of the adjoint representation of L. We prove that the number of multilinear central polynomials in n variables, linearly independent modulo I, grows exponentially like ( dim L ) n {(\dim L)^{n}} .
Periodic Controls in Step 2 Strictly Convex Sub-Finsler Problems
2020
We consider control-linear left-invariant time-optimal problems on step 2 Carnot groups with a strictly convex set of control parameters (in particular, sub-Finsler problems). We describe all Casimirs linear in momenta on the dual of the Lie algebra. In the case of rank 3 Lie groups we describe the symplectic foliation on the dual of the Lie algebra. On this basis we show that extremal controls are either constant or periodic. Some related results for other Carnot groups are presented. peerReviewed
Lie Algebras Generated by Extremal Elements
1999
We study Lie algebras generated by extremal elements (i.e., elements spanning inner ideals of L) over a field of characteristic distinct from 2. We prove that any Lie algebra generated by a finite number of extremal elements is finite dimensional. The minimal number of extremal generators for the Lie algebras of type An, Bn (n>2), Cn (n>1), Dn (n>3), En (n=6,7,8), F4 and G2 are shown to be n+1, n+1, 2n, n, 5, 5, and 4 in the respective cases. These results are related to group theoretic ones for the corresponding Chevalley groups.
Group graded algebras and almost polynomial growth
2011
Let F be a field of characteristic 0, G a finite abelian group and A a G-graded algebra. We prove that A generates a variety of G-graded algebras of almost polynomial growth if and only if A has the same graded identities as one of the following algebras: (1) FCp, the group algebra of a cyclic group of order p, where p is a prime number and p||G|; (2) UT2G(F), the algebra of 2×2 upper triangular matrices over F endowed with an elementary G-grading; (3) E, the infinite dimensional Grassmann algebra with trivial G-grading; (4) in case 2||G|, EZ2, the Grassmann algebra with canonical Z2-grading.
Obstruction theory in action accessible categories
2013
Abstract We show that, in semi-abelian action accessible categories (such as the categories of groups, Lie algebras, rings, associative algebras and Poisson algebras), the obstruction to the existence of extensions is classified by the second cohomology group in the sense of Bourn. Moreover, we describe explicitly the obstruction to the existence of extensions in the case of Leibniz algebras, comparing Bourn cohomology with Loday–Pirashvili cohomology of Leibniz algebras.
The enveloping algebra of the Lie superalgebra osp(1,2)
1990
International audience
Actions of complex Lie groups on analytic ?-algebras
1987
On a reduced analytic .ℂ-algebraR there are faithful analytic actions of complex Lie groups of arbitrarily high dimension if and only ifR has Krull dimension ≥2.
Erratum to “Separation of representations with quadratic overgroups” [Bull. Sci. Math. 135 (2) (2011) 141–165]
2011
Abstract In the paper entitled “Separation of representations with quadratic overgroups”, we defined the notion of quadratic overgroups, and announced that the 6-dimensional nilpotent Lie algebra g 6 , 20 admits such a quadratic overgroup. There is a mistake in the proof. The present Erratum explains that the proposed overgroup is only weakly quadratic, and g 6 , 20 does not admit any natural quadratic overgroup.
Initial Data for Non-Linear Evolution Equations and Differentiable Vectors of Group Representations
1995
Regularity properties of non-linear Lie algebra representations are defined. These properties are satisfied in examples given by evolution equations. We prove that this regularity implies that the set of C ∞ vectors for the non-linear group representation obtained by integration of the Lie algebra representation coincide with the set of C ∞ vectors of the linear part (the order one term) of this group representation.
Star-products and phase space realizations of quantum groups
1992
It is shown for a family of *-products (i.e. different ordering rules) that, under a strong invariance condition, the functions of the quadratic preferred observables (which generate the Cartan subalgebra in phase space realization of Lie algebras) take only the linear or exponential form. An exception occurs for the case of a symmetric ordering *-product where trigonometric functions and two special polynomials can also be included. As an example, the ‘quantized algebra’ of the oscillator Lie algebra is argued.